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This paper studies short-run wealth mobility in a heterogeneous agents, incomplete-
markets model. Wealth mobility has a “hump-shaped” relationship with the persistence
of the stochastic process governing labor income: low when shocks are close to iid or
close to a random walk, and higher in between. The standard incomplete markets
framework features less wealth mobility than found in the PSID wealth supplements.
We include features commonly used in the literature to capture wealth inequality and
find that they do little to improve the model’s performance for wealth mobility. We
then look more closely at the data — families that move across multiple quintiles of
wealth are more likely to either (i) experience a marriage (up) or a divorce (down), (ii)
receive a bequest (up), or (iii) earn a significant fraction of business income (up and
down). We explore simple ways to introduce these features into the benchmark model.

KEYwWORDS: Wealth Mobility; Heterogeneous Agents; Inequality,

JEL CLASSIFICATION CODES:


mailto:daniel.carroll@clev.frb.org
mailto:nchoffma@andrew.cmu.edu
mailto:ey2d@virginia.edu

10

15

20

25

30

1 Introduction

This paper examines wealth mobility in a simple dynamic stochastic general equilibrium
model with incomplete markets in the spirit of Bewley (1986), Aiyagari (1994), and Huggett
(1993). This model and its many variations has become the workhorse model of macroe-
conomics in great part because it generates an endogenous distribution of agents across
income and wealth. This endogenous distribution is ideal for studying the effects of policy
on inequality. Very little is understood in this environment regarding wealth mobility — the
frequency with which agents “switch places”.

Mobility is distinct from inequality. It should be obvious that inequality is a necessary
condition for mobility — if everyone is the same, it makes no sense to talk about households
switching places in any distribution — but inequality can arise in the absence of mobility.
For example, without risk inequality can be not only present but permanent, depending on
how savings choices vary in the population, while mobility may be zero as agents remain
frozen in their ordering within the wealth distribution. Thus, inequality per se is not
informative about the insurance opportunities that agents can access. Furthermore, given
the generally-poor quality of the consumption panel data needed to directly characterize the
incompleteness of asset markets, we think it useful to consider whether mobility data can
help us characterize the asset markets insurance opportunities? used by households.

This question has policy implications. As discussed in Carroll and Young (2011), changes
in the progressivity of income tax functions have qualitatively different effects depending on
whether inequality is driven by time-invariant characteristics like preferences and average
labor efficiency as opposed to uninsurable risk (as in Castaneda et al. (2003)). Specifically,
a more progressive income tax function leads to lower inequality under idiosyncratic risk,
as it effectively reduces the volatility of the idiosyncratic component (labor productivity)
and compresses the distribution of returns; in contrast, under no risk but permanent hetero-
geneity, rich households actually increase their assets and poor households reduce them. It
seems important therefore to get a clear picture of what drives inequality, and that requires
an understanding of asset market opportunities.

We also want to point out two other papers that touch on the policy importance of
mobility. In Guvenen et al. (2015), the optimality of wealth taxes relative to capital income

taxes is shown to depend on the mobility of agents; if households ”get rich quick” then Uhm
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. we need to complete this thought.. In Carroll et al. (2016), voting with commitment
to future taxes implies that agents who expect to transit quickly are reluctant to impose
high taxes on capital income and high transfers, since they expect to rapidly end up on the
wrong side of the wealth transfer distribution (with a skewed distribution the mean wealth
type loses wealth to the median type under majority voting).

Since inequality is not sufficient, we turn to mobility. In this paper our goal is to
characterize how mobility is determined with a given workhorse model and compare it to
the numbers found in the Panel Study of Income Dynamics Wealth Supplements. To this
end, we first present a battery of different measures of mobility found in the literature.
The Shorrocks measure uses the trace of the Markov transition matrix only — a process has
higher mobility if the trace is smaller, meaning that households are more likely to leave
their current quantile. In contrast, the Bartholomew measure uses a weighted average of
transition probabilities, where the weights are the absolute number of quantiles that the
agent ’'passes through’; under this measure, an economy is more mobile if agents within
it make distant moves. = The ’second highest eigenvalue’ measure is commonly used in
macroeconomics; we show for two-state chains the autocorrelation of a chain equals the
second highest eigenvalue.! Finally, the 'mean first passage time’ calculates the expected
number of periods before a household exiting an initial quantile reaches any other particular
quantile for the first time. We also briefly mention the Cowell-Flachaire measure, which is
more general.

We use these measures to interpret the wealth movements generated by our model. Com-
paring two environments in which the only difference is the persistence of the idiosyncratic
shock, we find that mobility is ’hump-shaped’ — mobility is low when shocks are close to iid
and when they are close to a random walk, and higher at intermediate values. We decom-
pose the change in mobility as the sum of three components, which we label luck, behavior,
and structure. First, fix the behavior of all households at a given persistence value, and
let one household draw a sample sequence from a process with a higher autocorrelation;
all that changes is the particular realizations of the shock, which we label 'luck’. Now let
this household realize that the persistence of her shock is different and reoptimize, leaving

the behavior of all other households unchanged (including their persistence); we label this

!This result is not general. We cannot prove anything for chains with more than two states, but a
Monte Carlo experiment with random stochastic matrices shows a low correlation between the modulus of
the second-highest eigenvalue and the autocorrelation of the chain.
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change 'behavior’, since it captures the effect of different decision rules on mobility. Third,
suppose all other households also face the new persistence coefficient, leading to changes in
the distribution of wealth against which any particular household will be viewed; we call this
the ’structural’ effect.? I think this gets into too much detail. Let’s keep it short and get
into specifics later.

All five mobility measures return a similar decomposition pattern. Structure has a min-
imal effect on mobility, while behavior has a large negative effect and luck a large positive
effect (given the change is to increase the autocorrelation). The negative effect of behav-
ior results from the decreased sensitivity of saving to more persistent income shocks; this
sensitivity is a reflection of consumption-smoothing, wherein shocks that are permanent are
absorbed into consumption since there is no 'better future’ to borrow from, while transitory
shocks are smoothed away using a buffer-stock of assets. In contrast, increased persistence
more often generates longer consecutive strings of high or low productivity draws (luck of
the draw), and therefore generates more movement up and down the wealth ordering.

Using a reasonable calibration for the income process (taken from Floden and Lindé
(2001)) with a high persistence of shocks, we find that the benchmark model delivers too
little short-run mobility relative to the data (over five-year horizons). Specifically, we find
that the model implies far too little mobility overall, but in particular fails to deliver the
high mobility observed in the lowest and highest quintiles; in the model, households stay
in these quintiles on average 38 and 63 years, in contrast to values in the data closer to 15
and 17 years, respectively. Furthermore, households in the model also stay in their initial
quintile too frequently, and when they move they move only one quintile at a time; in the
data wealth moves more rapidly, with significant numbers of households switching more than
one quintile in either direction.

We then move to consider different environments, designed to illuminate what is causing
the model to fail. We first look at a variety of changes used to match the extreme wealth
inequality observed in the data. We examine the Krusell and Smith (1998) modification
that introduces stochastic movements in discount factors that are highly persistent. The
discount factor model improves a small amount by increasing mobility at the lower end of

the wealth distribution, but actually reduces it at the high end; the reason the model gets

2Technically, the behavior effect could also arise under the third change, since equilibrium prices differ.
We ignore this distinction as the interest rate turns out to change very little across these experiments.
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high wealth concentration is that it nearly ’freezes’ rich households in the top quintile, since
high discount factor types will save a significant amount whether their income is high or
not, and these discount factor states must be very persistent if they are to match wealth
inequality.

We then examine a 'rockstar’ model as in Castaneda et al. (2003), in which the earnings
process has a rare and transitory state with very high income and a relatively high probability
of dropping to the lowest state. The rockstar model works relatively well, as it increases
mobility across the board and introduces some households that shift across more than one
quintile; nevertheless, mobility at the high end is still substantially too low as households
do not choose to let their wealth fall fast enough. This failure can be understood as the
result of standard buffer-stock behavior combined with decreasing absolute risk aversion —
with high temporary income, households save rapidly to move away from the borrowing
constraint but dissave slowly. Furthermore, the rockstar model requires an earnings process
unlike anything in the data (see Guvenen et al. (2015)).

We then consider how the span of assets affects mobility — we permit households to
purchase some contingent securities, but maintain a borrowing constraint. With contingent
claims, wealth mobility can increase if the household takes extreme positions; if transitions
are rare, then insurance against those transitions is cheap and permits very large portfolio
positions, which are useful due to the borrowing constraint. On the other hand, as shown in
Rampini and Viswanathan (2016), poor households hold portfolios that hedge against fewer
states than rich households do, meaning that wealth mobility may fall. We find that the
hump-shaped pattern from the one asset case holds in an environment with an incomplete set
of state-contingent assets. Compared to the one-asset baseline economy, partially completing
the market decreases wealth mobility when the underlying income shock persistence is not
too high. When the persistence becomes sufficiently large, however, the partial insurance
economy has greater wealth mobility, due to this portfolio-composition effect. These effects
get stronger as we add more contingent claims.

Having shown that the basic model does not replicate the wealth mobility statistics
particularly well, we next drill deeper into the facts — can we learn anything about why
these families move up and down the wealth distribution? We run probits to study the
determinants of the probability that a family makes a ”jump” (a movement of more than

two quintiles) over a five-year horizon. First, we see that families that make one jump are
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significantly more likely to make another jump; that is, some families are just more mobile
than others. Second, we find that the portfolio of the family is critical for these jumps —
families with stocks are more likely to move up and less likely to move down, and families
with private business income are more likely to move up and down as well as more likely to
jump up or down.® Third, families that experience a marriage, divorce, or inheritance are
also more likely to move and jump (in the obvious directions).

We explore simple ways to integrate these ”direct wealth” shocks into the basic model;
our goal is to give researchers an easy modification that brings the model closer to the
data, so our representations of these shocks is simple and abstract. We find that "mar-
riage/divorce /bequest” shocks, which take the form of large but infrequent shocks to the
dynasty’s current stock of assets, do not help much — because they are rare, they do not gen-
erate enough movement. Introducing iid heterogeneity in returns also does not improve the
situation significantly, even if we choose the variance to be unreasonably large (that is, with
returns that range from —64 percent to 158 percent). We conclude that simple modifications

to the model are not straightforward to construct.

2 Measures of Mobility

The literature on measuring income mobility with transition matrices dates back to at least
as early as Prais (1955) who examined transitions between occupational classes in England.
There is no standardized measure in part because there are many aspects to mobility.* In
this paper, we are primarily interested in so-called relative mobility. Relative mobility
measures how likely it is that a household in wealth quantile n,; at time s will be in some
other quantile ny at time s + ¢, where t is a fixed number of periods in the future.
Formally, represent by x (I") the distribution over each of N wealth quantiles (i.e., x =
[+ %> » 7)) and by ¢ (T') the wealth values defining the quantiles. That is,

q(T) =[a1, 92, -, qn]

where ¢ = a and ¢; = a; : Z;}:lf dl' (a,e;) 1{g,_1<a<q} = 3, for i = {1,...,N}. The g,

3Quadrini (1999) and Quadrini (2000) also point out the connection between private business activity
and mobility, but only over the period 1984-1989.
4For a broad overview of the literature, see Fields and Ok (1999).
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values define the cutoff wealth values for entering the i'® quantile (the lowest wealth value
in the quantile). Further, denote by Q; = {a : a € [gi,¢iy1)},; y_, and Qn = {a : a > qn};
these sets define the wealth levels that constitute a given quantile. Finally, let My, y (I')
be a regular transition matrix induced by I' with the element m;; indicating the probability
that a household in quantile Q; will be in quantile Q; after some fixed number of periods.”

We will consider four measures from the literature, discussed at length in Dardanoni
(1993). In particular, we highlight how each measure captures somewhat different aspects

of mobility (due to the loss of information generated by moving from a matrix to a scalar).

2.0.1 Shorrocks Measure

Shorrocks (1978) measure of mobility focuses on the probability weight along the diagonal of
M. One interpretation of the measure is that it reports the ’stickiness’ of initial conditions.

Formally, Shorrocks’ measure is

N — trace (M)

ps (M) = N — 1

The Shorrocks measure takes values between 0 and 1, with smaller values indicating a lower
likelihood that a household will escape its initial quantile. Importantly, the measure is
unaffected a reallocation of mass along off-diagonal elements. The Shorrocks measure makes
no distinction between economies where households move immediately from rags to riches

and those where the poor become only slightly less poor. For example, the two Markov

processes
0.5 05 0.0

IIa= | 025 0.5 025

0.0 05 0.5

®According to Theorem 4.1.2 in Kemeny and Snell (1976)), a transition matrix is regular if and only if
for some ¢t > 0, M has no zero entries. Regularity guarantees that starting from any state in the Markov
chain any other state can be visited in a finite amount of periods (that is, all states communicate). This
condition is related to the 'monotone mixing condition’ (see Hopenhayn and Prescott (1992)) used to prove
the existence of a stationary distribution I', which Rios-Rull (1998) labels ’the American Dream and the
American Nightmare’ condition. This condition is a long-run mobility requirement, whereas we are interested
in short-run effects.



and

0.5 00 0.5
lIp=1025 05 0.25
0.5 00 0.5

would be regarded as equally mobile; however, the second process moves 'faster’ since it
admits one-period transitions between the lowest and highest wealth states, while the first

process requires any movement between extreme states first pass through the middle.

2.0.2 Bartholomew’s Immobility Measure

In contrast to the Shorrocks measure, Bartholomew and Bartholomew (1967) deals exclu-

sively with the off-diagonal elements:

1 N N
pup (M) = mzzmi]‘ i — J

i=1 j=1
is the expected number of quantiles a household would cross into each period. The measure
puts positive weight only on the off-diagonal probabilities. The term |i — j|, the absolute
number of quantiles crossed into, places more weight on transitions that cross multiple
quantiles; a transition matrix with more probability mass further from the diagonal has
greater mobility (like ITg in the previous subsection). Fields and Ok (1999) point out that
Bartholomew’s measure can be thought of as capturing total movement; economies in which
households oscillate between being very rich and very poor would be measured as much more
mobile than those where households transition more slowly through adjacent quantiles, even
if the former involved fewer such transitions. To see how this measure works, consider the

Markov processes

0.5 05 0.0
Ia=1] 025 05 0.25
0.0 05 0.5

and -~ -
0.75 0.0 0.25

lp=1]025 05 0.25
| 0.25 0.0 0.75 |
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According to Bartholomew’s measure, these chains are equally mobile:

s (I4) = 0.75

Agents make more frequent, ”small” moves in A, and less frequent ”large” moves in B.

2.0.3 Second Largest Eigenvalue

The second largest eigenvalue of a stochastic matrix governs the mixing rate of a Markov
chain process, where a larger eigenvalue implying a slower mixing rate. Let \; (M) be the i‘!
largest eigenvalue of M. A natural measure of mobility is pop (M) =1 — |y (M)|. Because
M is regular Ay = 1, and A\; < 1 for all # > 1. Sommers and Conlisk (1979) show that
o (M) measures the total deviation of M from a matrix with perfect mobility.5

To understand why this measure captures mobility, we can show for a two-state Markov
chain that the second highest eigenvalue is equal to the autocorrelation of the chain. Let

the Markov chain transition matrix be

which has invariant distribution

11— 11—

T = , L= .
2—-p—q 2—-p—q

The autocorrelation is

(21— 22)" (1= p) (1 - q) ZH

2 1—
(21 = 2)" (1 =p) o5

p(2t]zt-1) = =p+qg—1
and the eigenvalues of Il are 1 and p + ¢ — 1.
This result is not general, and we were unable to derive any analytical results for chains

with more than 2 states. We therefore conducted a Monte Carlo exercise by drawing 5000

6Perfect mobility for a NN matrix is one with all elements equal to 1/N. This concept is related to
‘origin independence.’
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random stochastic matrices and computing the sample autocorrelation from a simulation
of length 100, 000; it turns out that this autocorrelation is only weakly correlated with the
second-highest eigenvalue of the transition matrix. However, if we confine ourselves to only
Markov chains generated using the Rouwenhorst method, which preserves the autocorrelation

of the two-state process as additional states are introduced, this result does hold.

2.0.4 Mean First Passage Time

The mean first passing matrix 7" (M) is the expected number of periods until a household

initially in quintile ¢ first arrives in quintile j; Meyer (1978) shows that

T = (I — K + Jdiag (K)) (diag (K)) ' + E

where ) )
00 0 —1
00 0 —1
E= ,
0 —1
11 -1 0 |
J is a matrix of all ones,
-1
| U 17
dr 1 ’
and
U c
A=1-M =
d' «
Conlisk (1990) proposes using
MFP =2'Tx

as a measure of mobility; WHAT IS ’d’??? M F P is the expected number of periods before
one household enters the quintile of another household when both are drawn at random from
['. Because x has equal elements that sum to one (recall that x is a vector of quantiles),
MFP is just the average value of the elements of 7. For ease of comparison to the other

measures, we define

N

UM FP (M) = MEFP
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If M is "perfectly mobile” uyrpp = 1. As the diagonal elements of M approach one,
uyFP — 0.7

2.0.5 Cowell-Flachaire index

Cowell and Flachaire (2018) proposes a superclass of mobility measures which allows for the

aggregation of a broad range of mobility concepts. Members of the class take the form

a|1 a|nzz 1|:U2 Vl _1] a?éo’]'
QD=3 LT, Ylog (3/%) a=0
z 1U10g<% UV) a=1

where n is the number of individuals in the population; u; and v; represent the "status” of
individual ¢ at the beginning and end, respectively, of the time period under consideration;
and U and V are the mean status levels across individuals in each period. The index is
amenable to different definitions of status. For example, in the context of wealth mobility,
status may be defined as the specific levels of wealth held each individual, as a collection of
intervals of over wealth, or as a subsets of a wealth distribution. The parameter « controls
the weight given to downward movements relative to upward ones. For a < (>)0.5, Q (M) is
more sensitive to upward (downward) movements. Cowell and Flachaire (2018) shows that
members €) satisfy many desirable properties in a mobility measure, including independence
of population size and preservation of order under scaling.

The member of 2 that is suitable for comparing mobility between K x K quantile tran-

sition matrices is

iy [t D Syt <] ez o
per (M) = K(K+1 Zk L oy myal log (%) =
ReTT) Yoy Yoy muk log (%) a=1

So far we have defined these measures generally for any set of evenly-spaced quantiles.

In the remainder of this paper, we will restrict attention to quintiles, that is dim (M) = 5.

Turrrp cannot exceed 1 if M is monotone (i.e., each row is stochastically dominated by the one below
it). Huggett (1993) proves the monotonicity of M in Bewley models with positively-autocorrelated shocks.

10
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2.1 Structural vs. Exchange Mobility

We are concerned with how quickly and to what extent agents change their ordering within
the stochastic stationary distribution of wealth (known as relative mobility). In the steady
state, households’ wealth positions change, but the wealth distribution itself is time-invariant.
It would be intuitive to presume that relative mobility is just a simple function of the rates at
which agents accumulate wealth and that greater relative mobility implies that households
transition more quickly through quintiles, by rising and falling over a shorter time span. This
exchange or pure mobility, however, is only one component of relative mobility. Differences
in relative mobility can also arise from changes in the shape of the wealth distribution, even if
individual savings behavior is the same. This concept is called structural mobility, and it can
appear in the data when wealth inequality changes over time. In the stochastic steady state
of a Bewley model, wealth inequality does not change over time. Nevertheless, structural
mobility must still be taken into account when comparing the steady states from two models.
Because of general equilibrium effects, changes in the model environment induce changes in
the shape of the stationary distribution as well and are likely to alter the cutoffs defining
wealth quintiles.

To illustrate, consider two distributions of wealth, I'y and I's, and let I'y be a shape-
preserving spread of I';. Take a household from each distribution and label them according
to their distribution of origin. Because their is more wealth in equality in I's than in I'y,
the cutoffs which define the quantiles will be spread more apart. Even if household 1 and
2 begin with the same initial wealth, have the same optimal saving policies, and experience
identical realizations for labor productivity, household 2 will transition across quantiles less
frequently over the same amount of time, and so our measures of mobility would rank I'y
as less mobile than I'y. Figure 1 plots the cutoffs for entering each quintile as defined by
the distribution of wealth from our experiments. Notice that there is not much change in
the cutoffs until p exceeds 0.7. Beyond that, as the productivity process becomes more
persistent, the distribution spreads out, and the cutoffs become further apart. In our
numerical experiments, we will detail how we use the model to identify exchange mobility

from structural mobility.

11
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2.2 Exchange Mobility: Behavior vs. Luck

Once the movement of households through the distribution has been isolated from move-
ments in the distribution itself, exchange mobility can separated further into changes due to
differences in productivity shock process and changes in household behavior. Consider two

households A and B with two II matrices. Let p4 = 0 and pg = 0.5 so

0.5 0.5
Iy =
0.5 0.5
and
0.75 0.25
B p—
0.25 0.75

One might initially suppose that household A will have greater mobility than household
B. After all, according to any one of the above measures, the earnings mobility of A is
considerably greater than that of B. This fact however does not necessarily translate to
greater wealth mobility. The reason is that randomness in the household earnings does
not wholly determine a household’s wealth. Because household utility is strictly concave,
they try to smooth consumption over time. Since shocks for A are less persistent, the
optimal response of household A to a switch in productivity is to adjust savings. The more
persistent the shocks, the more closely earnings resemble permanent income and the less

savings adjusts.

3 Wealth Mobility in the Data

3.1 Data

There has been relatively little empirical work on the intragenerational evolution of wealth.®
We study eight waves of wealth supplements from the Panel Study of Income Dynamics
(PSID) from 1984-2015 to measure wealth mobility. Following Hurst et al. (1998), we use
identifiers from the family and individual files in the PSID to link families in the wealth

8Several studies on intragenerational wealth mobility have been conducted using a small number of waves
from the PSID. See Castaneda et al. (2003), Hurst et al. (1998), and Diaz-Giménez et al. (2011).

12
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supplements”?. Then, using the population weights from the family files, we construct the
distribution of wealth in each year and divide each distribution into quintiles. Finally, we
measure the fraction of households that transition between quintile ¢ and quintile ;5 for
i,7 € {1,...,5}, between the starting and ending years.

We study three time horizons: short, medium and long. We define the short horizon as
5-6 years, the medium horizon as 9-10 years, and the long horizon as 19-21 years'®. Table

1 reports the short, medium, and long-horizon wealth mobility matrices obtained from the

PSID data.
Table 1: Mobility Matrices

Short Horizon

1984-1989 1989-1994 1994-1999
0.70 0.23 0.05 0.02 0.00 0.66 0.24 0.07 0.02 0.01 0.64 0.26 0.07 0.02 0.01
0.25 045 0.22 0.06 0.02 0.27 045 0.18 0.07 0.02 0.25 0.47 0.21 0.05 0.02
0.06 0.24 0.44 0.19 0.06 0.08 0.25 0.42 0.19 0.06 0.10 0.22 0.43 0.21 0.04
0.02 0.06 0.22 047 0.23 0.03 0.06 0.27 0.42 0.21 0.04 0.07 024 044 0.21
0.01 0.01 0.06 0.22 0.70 0.01 0.03 0.05 0.24 0.66 0.01 0.03 0.06 0.20 0.70
2001-2007 2007-2013
0.62 0.25 0.10 0.03 0.01 0.60 0.30 0.08 0.02 0.00
0.27 043 0.22 0.07 0.02 0.26 044 0.24 0.06 0.01
0.09 0.28 0.37 0.21 0.05 0.14 0.18 0.43 0.21 0.04
0.03 0.08 0.24 0.43 0.22 0.07 0.08 0.20 0.47 0.19
0.01 0.03 0.05 0.22 0.69 0.02 0.02 0.05 0.21 0.71
Medium Horizon
1984-1994 1994-2003 2003-2013
0.63 0.24 0.09 0.03 0.02 0.61 0.26 0.09 0.03 0.02 0.57 0.29 0.10 0.03 0.01
0.23 0.41 0.21 0.10 0.05 0.24 044 0.23 0.06 0.03 0.27 0.41 0.23 0.07 0.02
0.10 0.28 0.33 0.21 0.09 0.11 0.25 0.35 0.23 0.06 0.14 0.21 0.39 0.20 0.05
0.05 0.08 0.26 0.37 0.23 0.06 0.09 0.24 0.39 0.22 0.06 0.08 0.21 044 0.22
0.02 0.03 0.09 0.25 0.61 0.03 0.04 0.08 0.21 0.65 0.02 0.02 0.05 0.23 0.68
Long Horizon
1984-2003 1989-2009 1994-2015
0.58 0.25 0.11 0.05 0.02 0.56 0.28 0.10 0.04 0.03 0.58 0.24 0.11 0.04 0.03
0.26 0.35 0.22 0.12 0.05 0.27 0.37 0.20 0.12 0.05 0.28 0.38 0.20 0.10 0.04
0.09 0.29 0.27 0.22 0.13 0.12 0.25 0.29 0.22 0.12 0.13 0.25 0.32 0.21 0.08
0.05 0.11 0.27 0.32 0.26 0.08 0.11 0.29 0.32 0.20 0.07 0.11 0.24 0.34 0.25
0.03 0.06 0.11 0.26 0.55 0.02 0.05 0.09 0.25 0.60 0.03 0.05 0.09 0.25 0.58

9We include only families who have the same head at the beginning and end of the sample period. This
would exclude cases where the head becomes deceased or institutionalized. In the case of a divorce, our
methodology retains the head, but the non-head spouse is discarded. On average, this restriction removes
8-9 percent of any sample.

OWhile it would be ideal to have a fixed length for each horizon, the irregular timing of PSID releases
does not permit it.
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It is immediately clear from Table 1 that empirical wealth data show quite a bit of mo-
bility. Particularly, we see that although the first and fifth quintiles are the most persistent,
families who begin in these quintiles have at least a thirty percent chance of ending else-
where, at all time horizons. Additionally, families in the middle three quintiles are, in every
period and at all horizons, more likely to leave their starting quintile than they are to stay.
A final key observation is the nonzero masses of families that make large transitions, cross-
ing multiple quintiles in one period. For example, we find that of the families who began
in the first quintile in 2003, about three percent end in the fourth quintile, and about one
percent end in the fifth. We also see large movements in the other direction with a nontrivial
frequency: over the same period, for example, about two percent of families who began in
the uppermost quintile ended in the second, and about the same proportion ended in the
first quintile.

Figures 17 through 19 show the evolution of our mobility measures over time for each
horizon. There is no apparent trend at the short horizon. However, over the medium and

long horizons, our measures show a decline in wealth mobility since 1984.

3.2 Confidence Intervals for Mobility

A question that arises when measuring economic mobility is the degree of certainty associated
with mobility matrices, and the measures applied to them. For example, as shown in Table 1,
we find that the proportion of families who begin in the first quintile and end in the fifth fell
from 1.2% between 1994 and 1999, to about 0.7% between 2001 and 2007. This observation
raises the question of certainty: can we say that this decrease is statistically significant? The
same question can be raised in relation to the observation that, for example, the Shorrocks
measure of mobility rose between these two periods: can we say that mobility increased
significantly?

In order to address these questions, we estimate standard errors associated with wealth
mobility using a bootstrapping procedure. In each iteration, we draw a new panel sample
with replacement, using the same number of observations as our original sample. For each
such sample, we re-estimate the wealth distributions in the starting and ending years, and
construct a mobility matrix using the same procedure as before. Using this procedure, we
construct 95% confidence intervals around each entry in the mobility matrix, as well as the

same intervals around the mobility exhibited by these matrices, as measured by each of the
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aforementioned measures. In Table 2 we show an example of the results of this process for
the period 1994-1999. The large entries in the matrix represent our point estimates for the
transition rates over this period, as reported in table 1. The smaller, parenthetical entries

below represent a 95% confidence interval for each element of the matrix.

Table 2: Wealth Transition Matrix with 95% Confidence Intervals

1994-1999
0.64 0.26 0.07 0.02 0.01 ]
(0.61,0.67)  (0.24,0.29) (0.05,0.08)  (0.01,0.02)  (0.01,0.02)
0.25 0.47 0.21 0.05 0.02
(0.22,0.28)  (0.44,0.50) (0.19,0.24) (0.04,0.07)  (0.01,0.03)
0.10 0.22 0.43 0.21 0.04
(0.08,0.12)  (0.19,0.24) (0.40,0.46) (0.18,0.23)  (0.03,0.06)
0.04 0.07 0.24 0.44 0.21
(0.02,0.05)  (0.05,0.09) (0.21,0.27) (0.41,0.47) (0.18,0.24)
0.01 0.03 0.06 0.20 0.70
| (0.00,0.02) (0.02,0.05) (0.04,0.08) (0.17,0.22) (0.67,0.73) |

From this table, we can see that, for example, between 61 and 67 percent of families in the
first quintile in 1994 ended in the first quintile in 2003, while between one and two percent
of these families transitioned to the fifth quintile. The interval for the latter figure over
the period 2001 to 2007 is about 0.2% to 1.2%, so to answer an earlier question, we cannot
conclude that the proportion of families transitioning from the first to the fifth quintile did
not fall significantly between the periods 1994-1999 and 2001-2007.

Our bootstrapping procedure also gives us the opportunity to reassess time trends in
mobility. In each bootstrapping iteration, we apply our four measures of mobility to the
resultant matrix. By doing so, we can compute bootstrapped standard errors for measures
of wealth mobility for each sample. Figures 20 through 22 show the measures of short,
medium, and long-horizon wealth mobility as reported before, with shading indicating 95%
confidence intervals. Broadly, we see that the size of these intervals depends on both the
time horizon (which influences the number of observations available), and on the measure
used. Once again, it is difficult to extrapolate a trend in the measures of short-horizon wealth

mobility't. At the medium horizon, we find that, at the 5% level, only one measure rates

1 Although, to answer a question posed earlier, the increase in mobility from 1994-1999 to 2001-2007 was
in fact significant at the five percent level.

15



300

305

310

315

320

any given period as having significantly less mobility than the preceding period. However,
by three of the four measures used, wealth mobility from 2003-2013 was significantly lower
than from 1984-1994. Thus, we can still safely say that medium-horizon wealth mobility has
significantly declined over our entire sample period. At the long horizon, we cannot say that

mobility declined significantly over our sample period.

3.3 Structural and Exchange Mobility in the Data

As was mentioned in section 3.1, wealth mobility arises from two sources: structural mo-
bility and ezxchange mobility. Again, structural mobility refers to mobility that arises from
changes in the shape of the wealth distribution, while exchange mobility is mobility aris-
ing from households changing their wealth position relative to other households. We aim
decompose mobility in the PSID wealth data into structural and exchange mobility. Using
the same samples that we use to measure overall mobility, we estimate exchange mobility by
recalculating the mobility matrix for each period, holding fixed the cutoff values for wealth
quintiles. That is, for each sample we divide the families into quintiles based on their start-
ing wealth as before, and keep track of the wealth values that demarcate those quintiles.
We then take that family’s wealth in the ending year and record the quintile in which that
wealth value would have fallen, using the quintile cutoffs from the starting year. In this way,
we hold the distribution fixed, and any mobility is purely the result of households’ changing
their relative wealth. In order to estimate structural mobility, then, we subtract exchange
mobility from total mobility over the sample period, as calculated by the procedure outlined
above.

Figures 23 through 25 show the time patterns in structural, exchange, and total mobility
over our sample period. In most cases, total mobility lies between exchange and structural
mobility, and the contribution of structural mobility to total mobility is negative. This
observation is consistent with the well-documented fact that wealth inequality in the US
has increased over the past 30 years. That being said, in most cases, the mobility lost to
structural changes in the wealth distribution is minimal. This decomposition shows that the

large majority of empirical wealth mobility is exchange mobility.
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4 Factors Influencing Mobility in Data

Comparing matrices generated by our model to those generated by the PSID wealth data
shows that our models fall short of approximating the level of wealth mobility seen in the
data. In this section, we use regression analysis to find suggestive evidence of the type of
shocks that, if added to our model, would help us better approximate real-world mobility.
In particular, we will focus on factors that affect wealth directly, such as a payoff from a
risky asset, a divorce, or the receipt of a large inheritance.

We address this question in two ways. Following Jianakoplos and Menchik (1997), we
estimate regressions using data from our samples to determine the effect of the factors
mentioned above on wealth movements. First, we regress a family’s change in percentile
ranking on a vector X of factors that may influence changes in a family’s relative ranking in

the wealth distribution:

Apis = X;ﬁ T+ Eit

Here, Ap;; = pi+ —Dpit—1, that is, the change in a family’s percentile ranking in the wealth
distribution over a given period. The vector X;; includes control variables such as a family’s
income and the head’s age at the beginning of period [t — 1, ], as well as indicators for the
holding of certain assets, or the head’s possession of a college degree at the start of period
[t — 1,t]. We also include period fixed effects, a4, in order to control for unobserved factors
that may influence wealth mobility'?.

Then, using the same vector of explanatory variables X;;, we estimate four Probit regres-
sions. First, we define Ag;; = ¢;y — gi1—1, Where ¢;; represents the family’s quintile in the

wealth distribution in year ¢. We estimate two Probit models using this outcome:
Pr(Agiy < 0|X) = ®(X'f) (1)
Pr(Ag; > 0]X) = &(X8) @)

Here, model (1) measures the probability that a family fell one or more quintiles over the

period [t — 1,¢], model (2) measures the probability that a family rose one or more quintiles,

12Guch as a recession, or a change in tax policy.
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and @ is the Cumulative Distribution Function of a standard normal distribution.

Our final two models aim to measure factors that may influence the likelihood that a
family makes a large movement through the distribution. We update models (1) and (2) to
focus on families who rise or fall two or more quintiles over a given sample period, movements

that we refer to as “jumps:”

Pr(Ag,; < —2/X) = B(X ) (3)
Pr(Aq; > 2|X) = B(X ) (4)

All of the aforementioned regressions are estimated using data on wealth mobility over
the short, medium, and long time horizons.

One note should be made on these large movements. Due to the high reinterview rates
in the PSID, families often appear in our samples for multiple time periods. Thus, we are
able to follow some families through most or all of our thirty-year sample horizon. Doing so
suggests that some families have a higher tendency than others to make “jumps,” movements
of two or more quintiles in the wealth distribution. At any given short-horizon period in our
sample horizon, the probability that a family moves two or more quintiles is between nine
and twelve percent. However, the probability that a family makes such a “jump” conditional
on that family having made a “jump” in the preceding period is substantially higher—between
20 and 30 percent, depending on the period in question.

Additionally, using our panel samples taken from the PSID data, we calculate mobility
matrices for subsets of our samples. Calculating these matrices for different time horizons
gives us a better sense of the ways in which some of the factors in our analysis contribute to

overall mobility.

4.1 Risk, Return, and Entrepreneurship

Evidence from the PSID suggests that a contributing factor in wealth mobility may be
heterogeneity in risk preferences and returns among families. Using questions from the
wealth survey, we can study the movements of families who hold at least some portion of
their net worth in assets with large variance in returns, such as stocks, real estate outside of

their main residence, and entrepreneurial ventures such as farms and self-owned businesses.
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Broadly, our Probit models do suggest that holding such assets does make a family more
likely to move throughout the distribution. For example, at each time horizon, we find that
ownership of stocks makes a family more likely to move up one or more quintile, and less
likely to fall.

Perhaps most notably, we find that ownership of a farm or business increases both the
likelihood that a family will fall in the distribution, and the likelihood that a family will
rise in the distribution. The symmetric effect of these entrepreneurial activities also holds
when we look at the likelihood that a family moves two or more quintiles in a given period; a
family’s holding assets in this category increased the likelihood of “jumps” in both directions.
This dichotomy can also be seen in Table 3, which shows the mobility matrices for families

who respectively did (IIz) and did not own a business (Ilyp) between 2003 and 2013:
Table 3: Mobility With and Without Business Ownership, 2003-2013

0.45 0.27 0.14 0.10 0.04 0.58 0.29 0.10 0.02 0.00
0.20 0.31 0.28 0.16 0.04 0.28 0.43 0.22 0.05 0.01
IIp = 1010 0.18 035 0.24 0.14 | ,IIyp= [0.16 0.22 0.40 0.19 0.03
0.09 0.04 0.14 0.44 0.29 0.04 0.09 0.24 0.45 0.18
0.03 0.02 0.04 0.18 0.73 0.02 0.02 0.05 0.27 0.64

Clearly, households who owned a farm or business were more likely to leave their starting
quintiles, as well as more likely to make large movements in the distribution. Notice, for
example, the different patterns in movements made by families who began in the first quintile:
those who owned a business were about as likely as those who did not to move to the second
quintile, but were far more likely to move to the third, fourth, and fifth quintiles. Similarly,
families that owned a business were about twice as likely as those who did not to fall from
the fourth quintile to the first.

These results suggest that a key influence in wealth movements is the opportunity for a
person to invest time and resources into a project that is at least partially self-funded, and

face the potential for both large gains and large losses from this project.

4.2 Other Shocks to Wealth

We document evidence that wealth mobility in data may be driven by other shocks directly

to wealth, outside of those resulting from the realization of a return on an asset. We study
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two such shocks: marriages/divorce (wherein assets are combined and divided, respectively)
and the receipt of inheritances. In order to capture the effect of these shocks, we include
in our Probit specifications binary variables indicating whether the head went through a
marriage or divorce or received an inheritance, in any of the intervening years between the
start and end of the time given time horizon.

Not surprisingly, we find that the occurrence of a marriage and a divorce have symmetric
effects: marriages increase the likelihood of a family rising in the distribution, while divorces
make it more likely that a family will slip at least one quintile. Additionally, the occur-
rence of a marriage is a strong predictor of a family making an upward “jump” of two or
more quintiles, and a divorce is a strong predictor of a family making a downward “jump.”
Importantly, the explanatory power of these events holds at the short time horizon.

We also find evidence that inheritances are strong predictors of large upward movements,
particularly over short time horizons. Although this is hardly surprising, it does give us
further insight into the type of features that could augment the model in order to better
match wealth mobility in the data. The PSID provides us with evidence that incorporating
shocks that affect wealth directly—rather than indirectly, through the labor income or savings

process—may be a key component in producing realistic mobility.

5 Model

As a starting point, we study the long run properties of Aiyagari (1994) with no borrowing.*?
There is a unit measure of ex ante identical households. Every period, each household
receives an idiosyncratic labor productivity shock, e, from a finite set & = [e1,e9,...,£/]
with 1 < g9 < ... < ;. The process for productivity shocks be Markov with stochastic
transition matrix II = Pr(gjle;) for j,7 € 1,..,J. Every household supplies the same fixed
number of hours, h, and earns total labor income equal to whe, where w is a market-wide
wage. Because the wage and hours supplied do not change across periods, labor productivity
shocks are equivalent to random labor income endowments. As in the standard incomplete-
markets model, there is only one asset, a, which is a claim to the capital stock K. Because no
state contingent claims exist, households have a motive to self-insure through precautionary

savings.

13Because we are concerned with mobility in the stochastic steady state, we omit time subscripts.
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A stand-in firm combines capital and effective labor through a constant-returns-to-scale
production technology F : #Tx Rt — Rt to produce a final good which may be consumed
or invested in capital for next period. The firm manages the capital stock from household’s
saving, pays an interest rate r on assets, hires labor, and invests in new capital. Capital
depreciates at a constant rate ¢ each period. We assume that the firm behaves competitively.

Letting F' be Cobb-Douglas, the optimal choice of the firm implies that each factor is paid

w=(1-a) (%)a

its marginal product:

and

The state vector of the household has two elements: current wealth, a, and current labor
productivity, €. Let period utility be represented by a continuous, strictly concave function
u: Rt — R, and assume that u is continuously differentiable as many times as necessary.

The household problem in recursive form is

V (a,e) = max {u (¢)+ BE [V (d, 5’)]}

c,a’

subject to the budget constraint
c+d <we+(l+7r)a

and lower bound constraints

c>0;d > a.
Denote by I (a,¢) the distribution of households over A x £.

Definition 1. A steady-state recursive competitive equilibrium is a set of value
functions V (a,€), policy functions g,(a,¢), ge(a,€)), pricing functions, r and w, and a dis-

tribution I'(a, e) such that

1. Given prices, V, g, and g. solve the household’s problem.
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3. Markets clear:

K

>/
7

>

J
adl’ (a,€;)

hede a 5]

4. T is consistent with the saving decisions of households and the process for e.

5. The joint distribution of wealth and productivity I (a,¢) is stationary.

6 Numerical Experiments

6.1 Baseline

15 We choose fairly standard values for our structural parameters: we let utility be logarithmic,
we choose f = 0.99 and § = 0.025 as roughly consistent with quarterly aggregates for the
capital /output and investment/output ratios, and we set a = 0.36 to match capital’s share
of income. We also choose a zero borrowing limit.

We follow Floden and Lindé (2001) who estimate an earnings process of p = 0.92 and

0. = 0.21 (annual) from the PSID. The resulting 5-year wealth transition matrix is

[ 0.87 0.14 0.00 0.00 0.00
0.13 0.73 0.14 0.0 0.00
0.00 0.14 0.74 0.12 0.00
0.00 0.00 0.12 0.81 0.07

| 0.00 0.00 0.00 0.08 0.92
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which features far less wealth mobility than any of the transition matrices above. Because
the underlying source of both inequality and mobility in this model is the stochastic earnings
process, we examine how the transition matrix above responds to different assumptions about

the Markov process.

6.1.1 Earnings Process

The fundamental force driving the distribution of wealth in the economy is the labor pro-

ductivity process. We assume the Markov process above approximates
log (¢') = plog (e) + v/, v/ ~ N (0,0%).

We set J, the number of individual productivity states, to 2.'* Given this and the parameters
p and o, we use the Rouwenhorst method to construct the Markov chain process. Under the
Rouwenhorst method, the Markov chain depends upon p and o. The states are equally-space

over the interval [—1, 1], where
(/-1

— =0
(1—p?)
The transition matrix, I, depends on two parameters, p and ¢q. Following Kopecky and

Suen (2010), we set

P =

note that II only depends upon the persistence parameter p.

A consequence of generating a Markov chain in this manner is that if one only varies p
and keeps o fixed, the vector of states will be different for each value of p. This dependence
will cause the marginal distribution of effective labor to vary across experiments due solely

to the approximation procedure, which could mess up our comparisons. To prevent this

4We have run our experiments with 7 productivity states as well. In general, the qualitative results do
not change significantly. One issue that arises when there are more than 2 values for productivity is for
very low values of p the transition matrix is no longer monotone (i.e., the conditional probability of moving
from € = ¢; to ¢’ = ¢, j # 4, does not monotonically decrease as the distance between j and ¢ increases).
Since monotonicity of the transition matrix is important for understanding the mobility measures and this
failure is simply an approximation error, we concentrate on the two-state case.
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contamination, we make o a function p. Given a baseline py and o(, we define

1—p?

1—pp

o (p) =09

This procedure guarantees that the € state vector of productivity remains the same across
p experiments and, because labor is supplied inelastically, so does N. Moreover, because II
depends solely on p, we can isolate changes to the transition probabilities without altering
the states. In this way, p will increase the probability of earning the same (by construction)
current labor income in the next period (it increases the weight along the diagonal of the

transition matrix).

6.2 The three factors affecting wealth mobility as p changes

We conduct a series of computational experiments to identify the fundamental ingredients
governing individual wealth mobility within the model. Specifically, we vary p, compute the
stochastic steady state, approximate the quintile wealth transition matrix via simulation,
and calculate mobility. Figure 2 plots the relationship between p and several measures of
mobility. Mobility is hump-shaped across persistence with mobility being low when p is near
0 and when p is near 0.9, and reaches its peak for p € (0.75,0.80). Because for each value
of p the model is solved in general equilibrium, the market clearing interest rate and the
wealth distribution itself will differ in each case. Thus, our results are the combination of
changes in structure, behavior, and luck. In a later section, we describe our strategy for
identifying the portion of mobility arising from each of these components, but first we will

discuss persistence affects each in turn.

Structure Figure 3 plots the steady state wealth distribution under different values of the
persistence of the productivity process. There are two things to note about the distribution as
p increases. First, the wealth becomes more unequally distributed as the right tail stretches
out. Because there are only two productivity states, in equilibrium households with the high
(low) productivity are savers (dissavers). The closer p is to 1, the more likely households
with high € are to draw high ¢’. As a consequence, some households will receive a very long
string of good productivity shocks, allowing them to amass a considerable amount of wealth.

In the same way, households that draw a low productivity will be more likely to draw low

24



475

480

485

productivity in the future, leading to the second feature of a larger p: more households are
borrowing constrained. These changes in the structure of the wealth distribution affect the
boundaries between quintiles. Figure 1 plots these boundaries for different values of p. The
cutoffs move apart gradually as p approaches 0.7. As the productivity process becomes more
even persistent, however, the distribution spreads out rapidly, and the boundaries become

further apart. When p = 0.99, the entire first quintile is at the borrowing limit.!?

Behavior Optimal household behavior changes responds to the persistence of the shocks
as well. The more sensitive is the saving policy to €, the larger the wealth movements will
be across periods, which in turn implies more rapid resorting. Here we state a proposition
about the relationship between p and the saving policy function g, (a,€) when the wealth

distribution is fixed.

Proposition 2. Consider two households, A and B, from the same steady state wealth
distribution, and without loss of generality, let pa > pg. For a > a, the distance between
saving functions across productivity draws is larger for the household with a higher probability

of switching productivity states,

(1019 (a.2) — g2 (0.21)| > |0t (0. 22) — g (a.e))).

Proof. Consider two households in the same wealth distribution Denote by m;; the conditional
probability that ¢’ = ¢; given € = ¢;. The corresponding conditional probability that ¢’ = ¢_;
is 1 —m;. Because p? > pP 7{i > 78, and 7§ > 74.

We will show that g7 (a,e1) < g2 (a,e1) < g2 (a,e9) < gP (a,e9). Tt follows from the
conditions on w and on the compactness of the budget set that g’ (a,¢) is strictly increas-
ing both arguments, so the inner most inequality is immediate. Next we will prove that
9e (a,e1) < g2 (a,1).

Assume not so g2 (a,e1) < g8 (a,e1). Then by the budget constraint ¢ < ¢, where ¢!

is consumption of household i. By the strict concavity of u,

() <’ (<)

15Under some measures, the narrowness of the first quintile can lead to ’spurious’ mobility because house-
holds will very frequently transition between the first and second quintiles despite almost no change in
wealth.
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which from the Euler equation implies
7Tfll‘/lA (9;4 (CL, 51) 751)—'_(1 - 7T-141) VY1A (gf (avsl) ’52) < ﬂ-ﬁ‘/lB (gf (CL, 51) 751)+(1 - ﬂ-ﬁ) ‘/13 (gaB (a’ 51) 752)

where V is the derivative of V' with respect to wealth.

490 We can use Theorem 6.8 from Acemoglu (2009) to establish that V' is strictly concave in

The strict concavity of V' in a leads to a contradiction since

‘/IA (g;? (CL, 81) 761) < 7fol‘/lA (g:z4 (CL, 81) 751) + (]- - 7TlAl) ‘/IA (gci‘ (CL, 51) 762)
< TV (92 (a,e1) &) + (1 =) ViP (9 (a,21) )

< VlB (gaB (a>51) a51)

which implies

9a (a,e1) > g7 (a,e1).

Finally, we will show that g7 (a,e2) < g2 (a,e5). Once again, assume not. Then

gs (a,22) < g;! (a,9)
u’ (CB) < (CA)
Vi (90 (a,22) &1) + (1= m31) Vi¥ (92 (a,2) . &2) < iy Vit (g2 (a.22) 1) + (L= 751) Vi (g0 (a.22) 22
VP (g7 (a,€2) 1) < Vi* (g2 (a,€2) , €2)

Again by strict concavity of V in a,

gf <a752) > gf (a752)

which is a contradiction. O

Intuitively, Proposition 2 is the permanent income hypothesis. If household A and
household B have the same assets today and each draws the good shock, but A believes that

w05 1ts shock comes from a more persistent process than B does, then A’s consumption will be
more responsive and so A’s saving will move less than B’s will. The consequence is that, all

else equal, mobility due to behavior should decrease as p increases.
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Luck Finally, a household’s mobility will be affected by the particular sequence of produc-
tivity draws. Within a given measurement window, if a household, beginning from a low
wealth level, happens by chance to get higher productivity than would be expected, then
that household will have high wealth mobility. The effect on mobility of more persistence
in good and bad luck is not monotone. Generally, mobility will be low when persistence is
either very low or very high. At very high p, households that start with good fortune will
tend to continue having good productivity, increasing their saving and moving further away
from other less fortunate households. At very low p, mobility is low because households
switch too frequently. If the household starts in a low quintile and receives a good shock,
it saves and moves up a bit in the wealth ordering, but in order to move even further up
and transition through multiple quintiles over time, the household needs to get a string of
positive shocks that is well above average. The probability of getting such a string however
increases in p. The result is that for low p households tend to move around only a small
region of their initial wealth position. Luck will tend to push up mobility if p lies in some
intermediate range. In that region, households will tend to get sufficiently long strings of
positive shocks to transition across quintiles, but switch between states frequently enough

to support mixing.

Total mobility With these three factors in mind, the inverted U-shape of mobility over
p can now be understood more easily. As p increases, agents experience longer sequences
of above (below) average productivity, leading to longer strings of saving (dissaving) and
a wider distribution of wealth. The expansion of the distribution should reduce mobility
since it increases the distance between quintile boundaries (with the possible exception of
the one between the first and second quintiles). More autocorrelated shocks should increase
mobility since it allows households to experience longer strings of movement in the same
direction, whether up or down; however, this effect is somewhat offset by the reduction in
the sensitivity of savings to the shocks. While at higher p, households move in the same
direction longer, they in smaller steps.

The above proposition explains the hump-shape in mobility. At low p, a move from state
(k,e1) to (k,e2) induces a large change in £’. In itself, this would increase mobility, but
because p is low, the probability of returning to the lower g (k, &) rule is high. Thus, it is

likely that such a household will not experience a long enough string of high productivities
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Table 4: Correlation between mobility measures

’ Correlation Coefficients ‘

HB H2E Hs
pavrp | 09991 0.9997  0.9991
s 1.0000 0.9991 —
por | 0.9991 — —

to accumulate a lot more wealth and move up into other quintiles. By a similar logic, a
household that just drew e; after having been e, is unlikely to move down quintiles. On
average households in a low-p environment, are very unlikely to move far away from their
initial wealth level, k, though they will move very frequently within a small neighborhood
of k.

As p increases, the distance of between savings functions does not fall much but the
likelihood of experiencing a long string of consecutive g5 productivities rises. This allows
households to move greater distances within the wealth distribution over a fixed amount of
time. At some point however, p becomes so large that households switch productivities
very infrequently, and the distance between savings rules gets very small. A household that
starts on the savings path implied by g (k,e2) is likelihood to continue building up wealth
for a long time but very slowly so that it takes many periods to transition between quintiles.
In our numerical experiments, we find a p near 0.7 returns the highest measure of mobility
over quintiles.

Figure 2 plots these mobility measures as functions of p (again where ¢ is normalized).
While the levels of the mobility measures differ, the orderings are very similar. For instance,

the correlations are nearly 1 as shown in Table 4.

6.2.1 Ghost households

In order to isolate the effects of structure, behavior and luck to mobility, we introduce 'ghost’
households into the computed steady state wealth distributions. A ghost is single, zero-
measure agent that differs from the other households in the economy in some way. Because
a ghost is atomistic, its presence does not alter either equilibrium prices or the quintile
boundaries of the wealth distribution. By changing the ghost’s environment, policy rules,

or labor productivity we can control for each of the other factors. In the first step toward
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constructing our decomposition, we introduce ghosts with different labor income processes
into each of the steady wealth distributions found in the baseline. For exposition, we will
draw a distinction between the p value of the process faced by normal households (that is,
the value which gave rise that particular wealth distribution) and the p value of the ghost.
Denote the first, pgp, and the second, pg. We then simulate and construct a 5 x 5 mobility
matrix for each ghost. We will perform this exercise for two types of ghost households.
The first ghosts understand that their process has a different autocorrelation than that of
the other households around them. As a result, their saving decision rules will differ from
those of the standard households in the economy, as will the realization of their productivity
shocks. The second type of ghosts, believe that they have the same process as the standard
households but experience the productivity sequence of a household of with a different p.

These households do not have different savings rules, only different shock realizations.

Informed ghosts The informed ghost understands the true value of its p. It takes prices
as given and solves the household problem. The ghost differs from the standard households
in its economy in both how it responds to shocks conditional on current wealth and the shock
sequence it faces. We calculate the ghost’s mobility matrix under the wealth distribution
generated by pgr # pe and compare it to the mobility matrix generated by the pgeg = pg
economy and attribute the differences to structure. Figures 4-7 plot contours of the surface
generated by the (pgg, pg) pairs. The 45 degree line running the through the contour is
general equilibrium mobility measures from our baseline experiments. Starting at a point
on the that line, mobility declines as we move along.

On Figure 4, we draw an example of the structural vs. exchange mobility calculation.
Comparing mobility at point A to mobility at point B, our method first picks out point C
where pgg is the same as in B but pg is equal to the persistence in A. Any differences in
mobility between C and A must come from facing a different distribution of wealth (i.e.,
structure).  Movement from A to C then is ’structure’ and movement from C to B is
‘exchange’.

Figure 8 plots the savings decision rules of three households with different when the
economy-wide p is 0.73. First notice Proposition 2 at play. Ghosts with low p have savings
decisions that are much more distant across ¢ realizations, while those with € near 1 have

policy rules near the 45 degree line. Agents with p = 0.05 will experience relative large
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and frequent changes in wealth across one period, while those with p = 0.98 will switch
infrequently but their wealth will also change very little each period. Importantly, notice
that the change in distance from p = 0.05 to p = 0.73 is much smaller than it is from
p=0.73 to p=10.98. This is a key factor for the hump-shape in total mobility. Depending
upon the measure used, the trade off between persistent shocks and smaller step sizes reaches
maximum mobility value somewhere between p = 0.7 and p = 0.8. For values below 0.7,
mobility is reduced because agents are switching from savers to dissavers too frequently. For
values above 0.8, households are accumulating (decumulating) wealth too slowly.

We find an analogy to driving helpful for explaining how mobility works in this model.
Think of the support of wealth as a highway that runs east and west. Take any location
on that highway and call all locations to the west of it 'poorer’ and all locations to the
east ‘richer’. ’Checkpoints’ along the highway correspond to quintiles of wealth (also called
"class boundaries’). Household decision rules are lanes on a highway. Some lanes move east
(toward higher wealth) and others move west (toward lower wealth); and the fastest lanes
are one the outside of the highway. The fastest westbound lane corresponds to the lowest
labor income value, and the fastest eastbound lane to the highest value. The further the
saving decision is from the 45 degree line, the faster it moves. Changing p alters how likely
one is to switch out of their current lane and into another one. In the two e case, there
is only one westbound and one eastbound lane. If p is high, than a household will likely
stay in its lane continuing to move up or down in the wealth ordering. As Figure 8 shows
however, the more persistent the Markov process the closer the decision rules are to the 45
degree line and so the more slowly will be the pace of the lane in our analogy. If p is low
the lane speeds will be faster, but the households will switch directions frequently, moving
up and the moving down the ordering. Maximum wealth mobility is achieved where lanes
move quickly enough to allow for distant movement, but also where they are likely not to

switch too often, allowing for a sufficiently long chain of movements in the same direction.

Uninformed ghosts To decompose exchange mobility from between behavior and luck,
we run the same type of experiment as above, but now the ghost does not realize that
its labor productivity process has a different autocorrelation. This ghost uses the same
decision rules as the other households in the distribution, but it realizes a different sequence

of shocks. Figure 9-12 plot mobility of these agents as a function of (pg, pgr). As before
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with the informed ghosts, we draw path to highlight one of the three components, here being
luck. We have a similar breakdown on figure 9. Moving from A to B is a combination of
all three components, but movement between A and C is entirely due to luck because the
ghosts in both cases reside in the same distribution and have the same decision rules. The
only difference is that a ghost at C has a more persistent shock process (identical to the
ghost at B).

The differences in the measures are also notable. The Bartholomew and Shorrocks
measures show mobility increasing as the ghost’s persistence parameter increases. For the
mean first passage measure, the relationship has a similar hump-shaped pattern. Holding
pae constant, mobility increases in pg until it reaches a maximum somewhere between
0.70 and 0.80; then it declines rapidly. Oddly, the 2"¢ largest eigenvalue measure actually
decreases in pg.

Here the we see the hump-shaped pattern in mobility. When the economy-wide p is
low, the savings rules are far apart so non-phantom agents in a fast lane but change often.
Mobility is low. The non-optimizing phantom agents with higher p share the same fast lanes
but are much less likely to switch. They have longer chains of wealth accumulations and
decumulations, and so their mobility is higher. One again, when p gets too high, the ghost
agents remain in their lane for a very long time. They will move through the distribution but
only very infrequently, and they will usually just 'pass through’ one intermediate quintile.
Those with low ¢ will spend a large number of periods in the bottom quintile before finally
drawing a good shock and making a transition back through the distribution toward the top

quintile where they will once again remain for a large number of periods.

6.2.2 Decomposing changes in mobility

We have identified three sources for the differences in mobility as the labor income process
becomes more persistent. In order to disentangle the contributions of each source to the total
change in steady state mobility, we will run several counterfactual experiments. Consider
the steady states of two economies, one with p = p, and one with p = p,; and without loss of
generality, let p, > p,. Denote by p;;j, the measured mobility induced by an agent acting
in a distribution produced by agents with p = p;, having optimal policy rules consistent
with p = p;, and experiencing a realized sequence of labor productivity shocks generated

according to p = p;. For ease of exposition, let p; 55 = py. Finally, let Apyy = py — pty.
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Afigy, is the total change in mobility between the economy with a labor income persistence
of p; and p,.

We decompose Apg,, in the following manner:

Afigy = Astructure + Abehavior 4+ Aluck

= (tty = tiey)) + (Pawy) = Paas)) + (Hewy) — Ha) -

Each component removes one conflating factor in the relative mobility difference, starting
with the structures of the p, and p, distributions, moving to differences in the decision
rules (behavior) of the agents, and finishing with differences in the realized sequence of
productivity shocks.

Figure 13 decomposes the total change in mobility as p rises into these three components.
Across all four measures, the decomposition is qualitatively the same. Structure has a small
negative effect on mobility, while behavior and luck make larger contributions, negative and
positive, respectively. At low levels of p, mobility rises in the shock persistence because luck
offsets behavior. Past a certain point, however, behavior becomes more powerful and pulls

total mobility down.

6.2.3 Borrowing Limits

So far we have imposed a strict borrowing limit of zero. A large fraction of households can
find this constraint binding, particularly when the labor income shocks are very persistent.
As a result, the steady state wealth level separating the first and second quintiles can be
very close to 0 so that even a small movement away from the borrowing limit can move a
household into the second quintile. In this case, households in the first (second) quintile
would appear to be very upwardly (downwardly) mobile. ~We have run cases with high
persistence and exogenous borrowing limits near the natural borrowing limit and found that
while it has little effect on our mobility measures. Therefore, we do not think that our

assumption of no borrowing is restricting our findings.
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7 Mobility and other features

7.1 Increased skewness in the wealth distribution

It is well-known that a Bewley model with idiosyncratic labor income risk alone does a poor
job matching the high concentration of wealth in the right tail.'® The fundamental issue is
that the sufficient amount of wealth to self-insure is low when agents are very patient and
shocks are relatively small. Once a household can adequately smooth its consumption, it
has no other incentive to continue saving, since interest rates are necessarily lower than time
rates of preference. Several approaches have been used to generate longer right tails in the
wealth distribution.

Krusell and Smith (1998) replace the scalar household discount factor with a 3-state,
highly persistent Markov chain.  The three values are [0.9763,0.9812, 0.9861], and the

transition matrix is
0.99654 0.00346 0

0.00043 0.999135 0.00043 | :
0 0.00346  0.99654

these choices deliver a Gini coefficient of wealth equal to 0.78. The invariant distribution of
[ is [0.1,0.8,0.1] and the average duration in either extreme-g state is 200 quarters. The

5-year wealth mobility matrix for the stochastic-8 environment is

[ 0.84 0.16 0.00 0.00 0.00 ]
0.16 0.70 0.15 0.0 0.00
0.00 0.15 0.73 0.11 0.00
0.00 0.00 0.11 0.84 0.05

| 0.00 0.00 0.00 0.05 0.95

The stochastic-3 model makes the mobility match worse — the top quintiles get even more
persistent, since drawing a high discount factor leads even agents with temporarily low

income to save, and discount factor shocks are very persistent. It is this immobility that

s delivers the high wealth concentration that was the goal of Krusell and Smith (1998), but it

16See Quadrini and Rios-Rull (1997) and Carroll (1998) for discussion.
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does not come for free.”

Castaneda et al. (2003) add a very high productivity state with relatively low persistence
and a high probability of transitioning immediately to the lowest productivity 8. The tran-
sitory nature of this 'rockstar’ state combined with the increased risk motivates households
in this state to build up a substantial amount of precautionary savings. When a house-
hold draws the rockstar state, it takes advantage of its temporary good fortune by saving
rapidly. This ’burst of saving’ produces the matrix below which has considerably more

upward mobility than the benchmark:

[ 0.73 0.17 0.05 0.04 0.00
0.24 0.52 0.19 0.05 0.00
0.00 0.34 0.52 0.14 0.00
0.00 0.00 0.24 0.59 0.17

| 0.00 0.00 0.00 0.17 0.83

Nevertheless, the rockstar model still has too little downward mobility. The consumption-
smoothing motive implies that while households save rapidly, they dissave slowly — staying
away from the borrowing constraint is the reason they save, after all. And furthermore the
resulting labor earnings process looks nothing like we find in the data (see Guvenen et al.

(2015)).

8 Mobility and Market Incompleteness

We know that market incompleteness is a necessary condition for permanent mobility —
mobility may be present along a transition path if agents have different preferences, but
eventually it will disappear as the economy transitions to a steady state (see Caselli and

Ventura (2000) and Carroll and Young (2011)). We now take up the question of how

17Carroll (2001) shows that a permanent "two-3’ model looks very much like the stochastic-3 model, so
the fact that the discount factors mean-revert does not seem important provided they do so slowly.
18Specifically, the state vector for labor productivity is £ = [1.0,3.15,9.78,250]. The Markov process for
labor earnings in Castaneda et al. (2003) has a stochastic aging component. Here, we abstract from this by
isolating the submatrix associated with the worker-to-worker transition and then renormalizing the rows so
0.984 0.012 0.004 0.000
0.031 0.965 0.004 0.000
0.015 0.004 0.980 0.000
0.109 0.005 0.062 0.823

that II is stochastic. The resulting transition matrix is II =
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mobility is connected to incompleteness, in the sense of the spanning of assets.

We consider two experiments. First, suppose there exist two assets, one of which pays
off if ¢ > F [¢] and one that pays off if ¢ < F'[¢]. Second, suppose there exist three assets,
which pay off if ¢ > Ele], ¢ = E[¢], and ¢ < E[¢]. In each case, asset markets are 'more
complete’, but mobility could easily go either way. Since the price of these assets is smaller
than the price of a risk-free security, portfolios that ’lever up’ in certain states can lead to
large changes in wealth should those states realize; the results inRampini and Viswanathan
(2016) show that agents in our economy will in fact choose to endogenously hold a skewed
portfolio if they are sufficiently poor.?

We compare the mobility results from these partial insurance cases to the baseline model.
In each case, we set the number of productivity states to 7. We will mainly discuss the
two-asset case; for simplicity, denote the productivity states where ¢ > F [¢] 'good’ states,
and the other ’bad’ states.

Figure 14 plots the portfolio decisions of several informed ghost households. In each
case, the p value of the underlying economy is 0.73. Each subplot shows the decisions of two
ghosts with the same persistence value, one with € = ¢,,,;, and one with € = €,.,. The solid
lines represent the number of claims purchased which pay off if the next period’s productivity
belongs to the same state as today’s productivity. The dashed lines are the claims which
pay off in the opposite state from today’s. For example, for the ¢ = &,,;, household, the
solid line is the stock of claims that pay off if one of the bad states is realized next period,
and the dashed line is those that pay off if the good state is realized instead.

First notice that the a household currently in the bad (good) state purchases contingent
claims against the bad (good) state near the 45 degree line. In fact, the household’s decision
rules in this regard are similar in appearance to those in the one asset case. Just as in the
baseline case, these saving rules become closer as the probability of remaining in the same
state increases. Again, households consume a larger fraction of income from more persistent
shocks. This feature of the portfolio induces more mobility as it allows for long strings of
consistent wealth accumulation and decumulation, as we illustrated in the section above.

The other side of the portfolio, that is the holding of claims which pay off only if the

household’s state switches (from good to bad or bad to good) in the next period, is quite

191t is straightforward conceptually to permit an arbitrary number of state-contingent claims, but the high
autocorrelation of the states means that some of these assets will have essentially zero price; prices that are
too low lead to instability in our solution algorithm.
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different, and it can have a big effect on mobility, particularly in the ghost household cases.
Households currently in a good productivity state purchase considerably more claims against
switching to a bad productivity state. These claims compensate both for the low labor
income from a bad state and provide additional precautionary savings the likely recurrence
of bad state shocks. Moreover, because the probability of switching between good and
bad states is low (especially for an epax Or €min household), this insurance is very cheap.
Naturally then, as p increases the good state household’s claims against bad states rises,
causing the balance of the portfolio to tilt more and more.

The portfolio of household’s currently in a bad productivity depends on their wealth
level. At sufficiently high wealth, the portfolio looks like a mirror image of the good
state household’s portfolio. The purchase of claims against a bad state lie close to the 45
degree line, while the purchases of claims against the good state are much lower. At lower
levels of current wealth, households would like to short the claim against good states, since
consumption in the bad states is very valuable. Since this shorting is not allowed, these
households simply do not participate in that asset market. With the exception of the wealth
region where the non-negativity constraint binds, the response of any household portfolios
can be generalized in the following way: as p increases, the demand for claims that pay off
if the current state continues become less sensitive to income shocks, while the demand for
assets that payoft if the state switches becomes more sensitive.

The consequence of this portfolio behavior for mobility across p is that as households
become less and less likely to switch states, their wealth path is characterized by small,
gradual movements interspersed with infrequent large shifts. Figure 15 plots mobility in
the partial insurance cases against the single asset baseline. Notice that mobility is lower
in the partial insurance environment unless the labor income process is quite persistent.
Regardless of the type of measure, mobility under partial insurance peaks at a higher p and
may even reach a higher (absolute) level before quickly descending again as shocks approach
being permanent. Figure 15 also shows that the pattern is strengthened by the addition of
the third asset.

Although the partial insurance environment features more wealth mobility at high values

of p, there is still less mobility than in data for our chosen value of p. The five-year wealth
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transition matrix is -~
0.75 0.25 0.00 0.00 0.00

024 0.56 0.19 0.05 0.00
0.01 0.19 0.66 0.14 0.00
0.00 0.00 0.15 0.77 0.08
| 0.00 0.00 0.00 0.08 0.92

9 Reconciling the data and the model

9.1 Accounting for wealth mobility over short horizons

Benhabib et al. (2015) use in a partial equilibrium OLG model with deterministic, hetero-
geneous earnings profiles and rates of return on saving to match aspects of inequality and
mobility in the US wealth distribution (see also Hubmer et al. (2017)). They argue that
three factors are critical for modeling wealth inequality and wealth mobility: stochastic earn-
ings, capital income risk, and differential saving and bequest motives. Our probit estimates
strongly suggest these factors may also play a role in observed mobility, which is where we

turn now.

9.1.1 Direct wealth shocks

The first extension introduces heterogeneous ex post returns into the model by hitting agent
wealth directly. In period ¢, households share the same expected gross return £ (1 +7') on
saving, but in t+1, realized gross returns are 2’ (1 4 r’)differ across them. In order to attempt
to replicate the ”jump” transitions in the data, we make the wealth shocks large. 2’ is iid
and can take three values [0.5,1.0,2.0]. The probability of either an extreme shock is small.
In order to keep mean wealth in equilibrium similar to that from the baseline model, we set
Pr(z =20) = %Pr (2/ =0.5). For the experiment, Pr (2’ = 1.0) = 0.98, implying that a
household draws one of the two wealth altering shocks every 12.5 years.? We recalibrate
the model to match the same targets as the baseline. As a result, equilibrium factors prices
are the same. The distribution of wealth, however, is considerably more unequal. The Gini
coefficient of wealth increases from 0.47 to 0.76, and median wealth declines from 84 percent

of the mean to only 34 percent. The resulting 5-year quintile transition matrix is shown

29These shocks are intended to be a crude form of marriage and divorce shocks.
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in Table ?77. Compared to the same transition matrix from the baseline model, the model
with infrequent, large wealth shocks has a little more mobility; however, it falls well short
of mobility in the data. Although the shocks are large enough to produce rapid movement
through the wealth distribution, they are so infrequent that too few households experience
a sufficiently long string of them. In order to match the mobility data through direct shocks
to wealth, shocks would need to be both large and frequent; if we double the frequency of
these shocks, we compromise our fit to wealth inequality without gaining much in terms of

mobility.

9.1.2 Heterogeneous return risk

In this second extension we adopt a slightly different approach — we assume returns are
heterogeneous. Letting r be the steady-state interest rate that clears the market for capital,

the return a household is paid on its savings is r + 2z’ where
Z"N (0,w,)

. If we set the standard deviation z’ equal to 0.10, the state vector of return rates in the
Markov process has a mean annualized expected rate of return of 9.2 percent in equilibrium,
with a maximum return of 158 percent and a minimum return of —64 percent. Even with-
out autocorrelation in the stochastic return process, the model generates a level of wealth
inequality similar to that in the data. The model Gini coefficient of wealth is 0.93 while it
is about 0.84 in the data.?! Adding heterogeneous rates of return brings the model closer to

data in terms of mobility. The 5—year mobility transition matrix is

[ 0.78 0.18 0.04 0.00 0.00
0.27 049 0.21 0.02 0.00
0.01 0.21 0.55 0.22 0.01
0.00 0.01 0.24 0.56 0.18

| 0.00 0.00 0.01 0.19 0.80

21Because of the presence of large negative returns, more than 20 percent of households are borrowing
constrained in the steady state. In order to make it possible to compute mobility over quintiles, we alter the
model slightly from the baseline by allowing households to borrow up to an equivalent of average income in
the economy (i.e., k = —1
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Nevertheless, even with large negative returns, there is still too little downward mobility

relative to the data.

10 Conclusion

We have studied wealth mobility in a Bewley model. In particular, we have shown how
assumptions about the underlying process driving long run wealth inequality affect relative
mobility. As labor income shocks become more persistent, relative mobility displays a hump-
shape, starting low growing monotonically to a maximum around p = 0.75 and then declining
sharply towards 0 as the process becomes closer to permanent. Using 'ghost’ households, we
run several counterfactuals in order to decompose the pattern in mobility into the change in
the structure of the wealth distribution, the change in optimal savings behavior in the face
of different income risk, and changes in sequence of labor income itself (i.e., luck). We find
that the hump-shape is generally attributable to the mixture of behavior and luck. The first
contributes negatively to mobility as household’s saving is less sensitive to more persistent
shocks. The second contributes positively by generating longer strings of low or high income
allowing wealth to accumulate or decline for longer over a fixed amount of time.

We document that the baseline Bewley model generates a stationary wealth distribution
with lower short-run wealth mobility than has been found empirically. In the data, a
non-trivial fraction of households experience large movements across wealth quintiles, even
over fairly short horizons, while these movements do not occur in the model. We extend
the baseline model in several ways commonly used in the literature to better match wealth
inequality. ~ While the inclusion of a very high income state with low persistence as in
Castaneda et al. (2003) improves the model’s predictions for upward mobility somewhat,
it does not match the observed downward mobility. In all versions of the model studied,
households move down in wealth too slowly, a natural result of the precautionary saving
motive present in the incomplete markets model.

Finally, we examine the relationship between market completeness and wealth mobility.
We find that replacing the non-contingent capital asset with two state-contingent claims
(i.e., partial insurance) may reduce or increase mobility depending upon the underlying
persistence of the income shock process. If p is sufficiently high, the more complete markets

economy has higher mobility. Nevertheless, the model still fails to quantitatively match the
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observed mobility.
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Figure 5: Mobility of optimizing ghost: usg
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Figure 6: Mobility of optimizing ghost: pg
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Figure 7: Mobility of optimizing ghost: up
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Figure 14: Portfolio decisions
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Figure 15: Mobility across p; Incomplete markets vs. partial insurance
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Figure 20: Bootstrapped Mobility Measures, Short Horizon
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Figure 21: Bootstrapped Mobility Measures, Medium Horizon
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Figure 22: Bootstrapped Mobility Measures, Long Horizon
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Figure 23: Decomposition: Short Horizon
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Table 5: Movement Through Distribution (OLS)

Dependent variable:

Married During Interval
Divorced During Interval
Non-white (Head)

Mean Income (Thousands)

Ap;

Short Medium Long
0.018** 0.061*** 0.080***
(0.004) (0.007) (0.011)

—0.049"*  —0.058*** —0.075"

(0.006) (0.007) (0.013)
0.006* 0.009* 0.016
(0.003) (0.005) (0.012)

0.0001***  0.0001*** 0.0002"*
(0.00001)  (0.00002) (0.0001)

College Degree (Head) 0.022** 0.034*** 0.058***
(0.003) (0.004) (0.009)
Owned Real Estate —0.002 —0.006 0.001
(0.003) (0.004) (0.009)
Owned a Farm or Business —0.004 0.0003 —0.014
(0.003) (0.004) (0.009)
Owned Stocks 0.012** 0.014** 0.027**
(0.003) (0.004) (0.010)
Received Inheritance 0.061*** 0.044*** 0.047***
(0.004) (0.005) (0.010)
Observations 27,334 13,798 3,219
R? 0.049 0.088 0.201
Adjusted R? 0.048 0.087 0.198
Residual Std. Error 0.836 0.943 1.087

F Statistic

93.426"**  101.387*** 67.040**

Note:

*p<0.1; *p<0.05; **p<0.01
All dollar values in constant 2016 USD
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Table 6: Upward Movements (Probit)

Dependent variable:

Pr(Ag;: > 0|X)

Short Medium Long
Married During Interval 0.168*** 0.398*** 0.456™**
(0.007) (0.009) (0.013)
Divorced During Interval —0.165*** —0.253*** —0.323***
(0.010) (0.010) (0.016)
Non-white (Head) 0.042** 0.047** —0.140**
(0.005) (0.007) (0.016)
Mean Income (Thousands)  —0.0002***  —0.0001***  —0.0002**
(0.00002) (0.00003) (0.0001)
College Degree (Head) 0.067** 0.146™** 0.249***
(0.004) (0.006) (0.012)
Owned Real Estate 0.012%** 0.019*** 0.011
(0.004) (0.006) (0.012)
Owned a Farm or Business 0.0003 0.018** —0.048***
(0.005) (0.006) (0.012)
Owned Stocks 0.091** 0.110** 0.195**
(0.004) (0.006) (0.013)
Received Inheritance 0.279*** 0.175* 0.254**
(0.007) (0.008) (0.012)
Observations 27,334 13,798 3,219
Note: *p<0.1; *p<0.05; **p<0.01

All dollar values in constant 2016 USD
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Table 7: Downward Movements (Probit)

Dependent variable:

Pr(Ag;: < 0|X)

Short Medium Long
Married During Interval —-0.014*  —0.112** —0.347
(0.007) (0.010) (0.015)
Divorced During Interval 0.334*** 0.330*** 0.408***
(0.009) (0.010) (0.016)
Non-white (Head) —0.089"**  —0.090*** —0.180***
(0.005) (0.007) (0.015)
Mean Income (Thousands)  —0.002***  —0.002*** —0.003***
(0.00004)  (0.0001) (0.0001)
College Degree (Head) —0.122%*  —0.128"* —0.237***
(0.005) (0.006) (0.012)
Owned Real Estate 0.022** 0.061*** 0.092***
(0.004) (0.006) (0.011)
Owned a Farm or Business  0.039*** 0.042*** 0.157***
(0.005) (0.006) (0.012)
Owned Stocks —0.094"*  —0.072** —0.016
(0.004) (0.006) (0.012)
Received Inheritance —0.387*  —0.287** —0.228"*
(0.008) (0.008) (0.012)
Observations 27,334 13,798 3,219
Note: *p<0.1; *p<0.05; **p<0.01

All dollar values in constant 2016 USD
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Table 8: Upward Jumps (Probit)

Dependent variable:

Pr(Ag¢: > 2|X)

Short Medium Long
Married During Interval 0.195* 0.435"** 0.280***
(0.010) (0.011) (0.016)
Divorced During Interval —0.053"*  —0.121* —0.137"**
(0.014) (0.014) (0.019)
Non-white (Head) 0.129*** 0.083*** —0.161***
(0.007) (0.010) (0.022)
Mean Income (Thousands)  —0.00005 0.0001 —0.0001
(0.00003)  (0.00004) (0.0001)
College Degree (Head) 0.139*** 0.189*** 0.283***
(0.007) (0.008) (0.015)
Owned Real Estate 0.107* 0.056™** 0.088**
(0.007) (0.008) (0.015)
Owned a Farm or Business  0.182*** 0.235*** 0.084***
(0.007) (0.008) (0.015)
Owned Stocks 0.005 0.075"* 0.268*
(0.007) (0.008) (0.017)
Received Inheritance 0.354™* 0.229*** 0.137**
(0.010) (0.010) (0.015)
Observations 27,334 13,798 3,219
Note: *p<0.1; *p<0.05; **p<0.01

All dollar values in constant 2016 USD
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Table 9: Downward Jumps (Probit)

Dependent variable:

Pr(Ag < —2|X)

Short Medium Long
Married During Interval 0.011 —0.085"** —0.302"
(0.010) (0.015) (0.021)
Divorced During Interval 0.299** 0.412%* 0.470***
(0.013) (0.013) (0.021)
Non-white (Head) 0.074**  —0.041*** —0.153"*
(0.007) (0.010) (0.021)
Mean Income (Thousands)  —0.002***  —0.002*** —0.002"**
(0.0001) (0.0001) (0.0002)
College Degree (Head) —0.090**  —0.117"* —0.226™**
(0.007) (0.009) (0.017)
Owned Real Estate 0.033** 0.141*** —0.010
(0.007) (0.008) (0.015)
Owned a Farm or Business  0.214*** 0.178*** 0.309***
(0.007) (0.009) (0.015)
Owned Stocks —0.019"*  —0.089*** —0.015
(0.007) (0.008) (0.016)
Received Inheritance —0.358"**  —0.252*** —0.140™
(0.014) (0.013) (0.017)
Observations 27,334 13,798 3,219
Note: *p<0.1; *p<0.05; **p<0.01

All dollar values in constant 2016 USD
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Appendix: Directional Mobility and Demographics

10.1 A Measure of Directional Mobility

We find that splitting our panels along demographic groups—particularly, along educational
attainment and race-reveals notable differences in mobility. All of our measures treat upward
and downward mobility identically, so for the purposes of this section, we consider the
following measure of directional mobility: for an n x n matrix II, we define the measure

x = (x4, x,), where

n i—1

2 .
o 2y 2

i=2 j=1

and
n

9 n—1
Ty = mz > Wigli— |

i=1 j=it+1

This measure is similar to the Bartholomew measure, but it is restricted to the entries
below (above) the diagonal for downward (upward) mobility.

For the purposes of exposition, we will refer to the non-college and nonwhite groups as
the “disadvantaged” group. We also note that, although our measure of directional mobility
places greater weight on larger movements, the difference in upward and downward mobility
across groups is not driven by a few large movements. Irrespective of the horizon or specific
time period, for the disadvantaged group nearly every below (above) diagonal element of the
transition matrix is greater (less) than the corresponding element in the transition matrix

for the advantaged group.

10.2 Differences in Mobility Across Demographics
10.2.1 Education

First, we divide our sample into families wherein the head had a college degree at the start
of the sample period, and those who did not. We then use the same method as before to
construct mobility matrices that capture the wealth transitions of families in each subsample.

Evidence from the PSID data suggests that families whose heads have a college degree

experience higher upward mobility. As an example, consider the following two matrices from
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915

920

925

930

935

2003-2013:

0.435 0.261 0.179 0.103 0.022 0.592 0.294 0.092 0.019 0.003
0.245 0.328 0.250 0.130 0.047 0.273 0.428 0.227 0.059 0.014
I3~ = 10114 0.140 0.327 0.301 0.118 | II%;" = | 0.154 0.240 0.408 0.168 0.030
0.041 0.031 0.168 0.430 0.330 0.064 0.101 0.229 0.453 0.153
0.008 0.003 0.036 0.180 0.774 0.042 0.039 0.064 0.293 0.563

These matrices show that families with a college-educated head experience higher upward
mobility, lower persistence in the lower wealth quintiles, and higher persistence in the upper
wealth quintiles. Families in this subsample have a good chance of getting to high levels
of wealth, and when they do so, they tend to stay there. By contrast, families wherein the
head did not have a college degree experienced higher downward mobility, higher persistence
in lower quintiles, and lower persistence in upper quintiles. These patterns are even more
pronounced at long horizon (see Table 10). These results suggest that the mobility matrices
over longer time periods may be built by two distinct groups: college-educated families
making larger contributions to the above-diagonal elements, and the families without a

college-educated making larger contributions to the below-diagonal elements.

10.2.2 Race

Splitting our sample by race yields similar results. Below, we report the ten-year wealth
transition matrices over the period 2003-2013 for households with white (Ily,) and nonwhite
(Iyw) families:

Here we see that families with a white head experience high levels of upward mobility,
low persistence in lower quintiles, and high persistence in upper quintiles. Nonwhite fami-
lies, by contrast, are more likely to make downward movements, and experience relatively
higher persistence in low quintiles, and lower persistence in higher quintiles. We can see, for
example, that a nonwhite family who started off in the first quintile had about a one in ten
chance of reaching one of the top three quintiles, compared to the roughly one in five chance
faced by a white family at making the same transition from the same starting point. Once

again, this is a pattern that holds true at a long horizon (Table 11).
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[ 0.480 0.314 0.137 0.055 0.014 ]
0.232 0.397 0.245 0.093 0.033
Iy~ = | 0.118 0.167 0.390 0.254 0.071
0.033 0.062 0.188 0.473 0.244
| 0.014 0.010 0.045 0.223 0.709 |

[ 0.624 0.274 0.084 0.016 0.001 ]|
0.299 0.424 0.218 0.051 0.008
%% = | 0.183 0.284 0.382 0.126 0.025
0.136 0.124 0.271 0.345 0.124
| 0.090 0.090 0.077 0.282 0.462

Table 10: Twenty-Year College Breakdown

[ 0.289 0.211 0.244 0.122 0.133
0.167 0.188 0.333 0.210 0.101
=% :10.059 0.129 0.294 0.329 0.188
0.049 0.079 0.238 0.311 0.323
| 0.019 0.023 0.047 0.211 0.700

[ 0.600 0.286 0.081 0.022 0.010
0.298 0.422 0.155 0.088 0.038
Y- | 0.144 0.312 0.293 0.166 0.086
0.099 0.131 0.314 0.325 0.131
| 0.011 0.082 0.142 0.290 0.475

Table 11: Twenty-Year Race Breakdown

[ 0.402 0.303 0.176 0.077 0.042
0.204 0.327 0.229 0.163 0.076
Iy~ : | 0.096 0.192 0.295 0.268 0.149
0.065 0.093 0.290 0.334 0.218
| 0.013 0.045 0.092 0.247 0.603

[ 0.657 0.258 0.058 0.010 0.017
0.371 0.433 0.143 0.040 0.013
507 : | 0.174 0.428 0.290 0.072 0.036

0.192 0.250 0.250 0.212 0.096
| 0.059 0.176 0.059 0.235 0.471
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